Sponsored Links

Jumat, 19 Januari 2018

Sponsored Links

Differentiation - Quotient Rule : Edexcel Core Maths C3 January ...
src: i.ytimg.com

In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let f ( x ) = g ( x ) / h ( x ) , {\displaystyle f(x)=g(x)/h(x),} where both g {\displaystyle g} and h {\displaystyle h} are differentiable and h ( x ) ? 0. {\displaystyle h(x)\not =0.} The quotient rule states that the derivative of f ( x ) {\displaystyle f(x)} is

f ? ( x ) = g ? ( x ) h ( x ) - g ( x ) h ? ( x ) [ h ( x ) ] 2 . {\displaystyle f'(x)={\frac {g'(x)h(x)-g(x)h'(x)}{[h(x)]^{2}}}.}


Video Quotient rule



Examples

  1. The quotient rule can be used to find the derivative of f ( x ) = tan x = sin x cos x {\displaystyle f(x)=\tan x={\tfrac {\sin x}{\cos x}}} as follows.
d d x tan x = d d x sin x cos x = ( d d x sin x ) ( cos x ) - ( sin x ) ( d d x cos x ) cos 2 x = cos 2 x + sin 2 x cos 2 x = 1 cos 2 x = sec 2 x . {\displaystyle {\begin{aligned}{\frac {d}{dx}}\tan x&={\frac {d}{dx}}{\frac {\sin x}{\cos x}}\\&={\frac {\left({\frac {d}{dx}}\sin x\right)(\cos x)-(\sin x)\left({\frac {d}{dx}}\cos x\right)}{\cos ^{2}x}}\\&={\frac {\cos ^{2}x+\sin ^{2}x}{\cos ^{2}x}}\\&={\frac {1}{\cos ^{2}x}}=\sec ^{2}x.\end{aligned}}}

Maps Quotient rule



Proofs

Proof from derivative definition and limit properties

Let f ( x ) = g ( x ) / h ( x ) . {\displaystyle f(x)=g(x)/h(x).} Applying the definition of the derivative and properties of limits gives the following proof.

f ? ( x ) = lim k -> 0 f ( x + k ) - f ( x ) k = lim k -> 0 g ( x + k ) h ( x + k ) - g ( x ) h ( x ) k = lim k -> 0 g ( x + k ) h ( x ) - g ( x ) h ( x + k ) k ? h ( x ) h ( x + k ) = lim k -> 0 g ( x + k ) h ( x ) - g ( x ) h ( x + k ) k ? lim k -> 0 1 h ( x ) h ( x + k ) = ( lim k -> 0 g ( x + k ) h ( x ) - g ( x ) h ( x ) + g ( x ) h ( x ) - g ( x ) h ( x + k ) k ) ? 1 h ( x ) 2 = ( lim k -> 0 g ( x + k ) h ( x ) - g ( x ) h ( x ) k - lim k -> 0 g ( x ) h ( x + k ) - g ( x ) h ( x ) k ) ? 1 h ( x ) 2 = ( h ( x ) lim k -> 0 g ( x + k ) - g ( x ) k - g ( x ) lim k -> 0 h ( x + k ) - h ( x ) k ) ? 1 h ( x ) 2 = g ? ( x ) h ( x ) - g ( x ) h ? ( x ) h ( x ) 2 . {\displaystyle {\begin{aligned}f'(x)&=\lim _{k\to 0}{\frac {f(x+k)-f(x)}{k}}\\&=\lim _{k\to 0}{\frac {{\frac {g(x+k)}{h(x+k)}}-{\frac {g(x)}{h(x)}}}{k}}\\&=\lim _{k\to 0}{\frac {g(x+k)h(x)-g(x)h(x+k)}{k\cdot h(x)h(x+k)}}\\&=\lim _{k\to 0}{\frac {g(x+k)h(x)-g(x)h(x+k)}{k}}\cdot \lim _{k\to 0}{\frac {1}{h(x)h(x+k)}}\\&=\left(\lim _{k\to 0}{\frac {g(x+k)h(x)-g(x)h(x)+g(x)h(x)-g(x)h(x+k)}{k}}\right)\cdot {\frac {1}{h(x)^{2}}}\\&=\left(\lim _{k\to 0}{\frac {g(x+k)h(x)-g(x)h(x)}{k}}-\lim _{k\to 0}{\frac {g(x)h(x+k)-g(x)h(x)}{k}}\right)\cdot {\frac {1}{h(x)^{2}}}\\&=\left(h(x)\lim _{k\to 0}{\frac {g(x+k)-g(x)}{k}}-g(x)\lim _{k\to 0}{\frac {h(x+k)-h(x)}{k}}\right)\cdot {\frac {1}{h(x)^{2}}}\\&={\frac {g'(x)h(x)-g(x)h'(x)}{h(x)^{2}}}.\end{aligned}}}

Proof using implicit differentiation

Let f ( x ) = g ( x ) h ( x ) , {\displaystyle f(x)={\frac {g(x)}{h(x)}},} so g ( x ) = f ( x ) h ( x ) . {\displaystyle g(x)=f(x)h(x).} The product rule then gives g ? ( x ) = f ? ( x ) h ( x ) + f ( x ) h ? ( x ) . {\displaystyle g'(x)=f'(x)h(x)+f(x)h'(x).} . Solving for f ? ( x ) {\displaystyle f'(x)} and substituting back for f ( x ) {\displaystyle f(x)} gives:

f ? ( x ) = g ? ( x ) - f ( x ) h ? ( x ) h ( x ) = g ? ( x ) - g ( x ) h ( x ) ? h ? ( x ) h ( x ) = g ? ( x ) h ( x ) - g ( x ) h ? ( x ) h ( x ) 2 . {\displaystyle {\begin{aligned}f'(x)&={\frac {g'(x)-f(x)h'(x)}{h(x)}}\\&={\frac {g'(x)-{\frac {g(x)}{h(x)}}\cdot h'(x)}{h(x)}}\\&={\frac {g'(x)h(x)-g(x)h'(x)}{h(x)^{2}}}.\end{aligned}}}

Proof using the chain rule

Let f ( x ) = g ( x ) h ( x ) = g ( x ) h ( x ) - 1 . {\displaystyle f(x)={\frac {g(x)}{h(x)}}=g(x)h(x)^{-1}.} Then the product rule gives

f ? ( x ) = g ? ( x ) h ( x ) - 1 + g ( x ) ? d d x ( h ( x ) - 1 ) . {\displaystyle f'(x)=g'(x)h(x)^{-1}+g(x)\cdot {\frac {d}{dx}}(h(x)^{-1}).}

To evaluate the derivative in the second term, apply the power rule along with the chain rule:

f ? ( x ) = g ? ( x ) h ( x ) - 1 + g ( x ) ? ( - 1 ) h ( x ) - 2 h ? ( x ) . {\displaystyle f'(x)=g'(x)h(x)^{-1}+g(x)\cdot (-1)h(x)^{-2}h'(x).}

Finally, rewrite as fractions and combine terms to get

f ? ( x ) = g ? ( x ) h ( x ) - g ( x ) h ? ( x ) h ( x ) 2 = g ? ( x ) h ( x ) - g ( x ) h ? ( x ) h ( x ) 2 . {\displaystyle {\begin{aligned}f'(x)&={\frac {g'(x)}{h(x)}}-{\frac {g(x)h'(x)}{h(x)^{2}}}\\&={\frac {g'(x)h(x)-g(x)h'(x)}{h(x)^{2}}}.\end{aligned}}}

Calculus: Chain rule with quotient rule example - YouTube
src: i.ytimg.com


Higher order formulas

Implicit differentiation can be used to compute the nth derivative of a quotient (partially in terms of its first n - 1 derivatives). For example, differentiating f h = g {\displaystyle fh=g} twice and then solving for f ? {\displaystyle f''} yields

f ? = ( g h ) ? = g ? - 2 f ? h ? - f h ? h . {\displaystyle f''=\left({\frac {g}{h}}\right)''={\frac {g''-2f'h'-fh''}{h}}.}

ShowMe - derivatives Quotient Rule
src: showme0-9071.kxcdn.com


References

Source of the article : Wikipedia

Comments
0 Comments